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Abstract

It is well known that if A and B are two positive definite matrices of the

same order and 0 <X <1, then '

\
4+ @-0)B] "< a4+ a-ns7L,
\
It is easy to construct an example consisting of two positive semi-definite matrices

for which the above inequality is not ttue when one replaces the inverse operation

\

by Moore-Penrose inverse operation. In this paper, we give&necessary and sufficient

. ah

conditions for the validity of -the inequality "Efl L Z%Z e

SN Ay it T +f— R = “““”(fi~—~» ¢/i/
Da+ 1-0817 < aat+ (-8t

for every 0<A<1l. As an application, we give a sufficient condition under which
the inequality (EA)+§_E(Af) is valid, where A is a square matrix of random variables
which is almost surely positive semi-~definite, generalizing the well-known result

(EA)_lj_EAfl when A is almost surely positive definite.

AMS subject classification: Primary 15A09, 15A45 Secondary 62H99

Key Words and Phrases: g-inverse, Moore-Penrose inverse, optimal designs, random .
matrices
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“' 1. Introduction:
1ol
- Fedorov (1972, Theorem 1,1,12, p. 19) states that if A and B are positive

N definite matrices and 0< A< 1 is any real number, then
o ' -1 -1 -1
By [AA+ (1-2)B] "< AA "+ (1-A)B . (1)
: (We say that, for two square matrices C and D of the same order, C<D if D- C is
::j: positive semi-definite.) For a proof of this inequality, see Moore (1973, p. 408)
or Marshall and Olkin (1979, pp. 469-471),

"_\ The above inequality is useful in optimal designs and, especially, in linear
:::: optimal designs. This inequality is used in Lemma 2.9,1 of Fedorov (1972, p. 123],
1

L Let D be the collection of all square matrices of order q and L a real linear func-
Set
o tional on D, i.e.,
e

L\ L(A+B) = L(A) + L(B) for every A,Be D, (2)
- and

.
f.{- L(cA) = cL(A) for every c real and Ae D, (3)
=
;") Assume, further, that

$5 L(A)> 0 1f A 1s positive semi-definite. (4)
-

) Consider an optimal design problem involving q parameters. LetM be the collection
.:; of all information matrices and N& the collection of all non-singular information
~
:‘3 matrices, Let L be a linear functional satisfying the above three conditionms.
v Lemma 2.9.1 of Fedorov [1972, p, 123] says that the function
-

~ Ly Ml-»R

o defined by Ll(M)- L(M-l), Me M1 1s a convex function on Ml’ i.e,
5
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LP\M1+ (l-A)MZ]_<_ ALl (Ml) + (l—A)Ll(Mz)‘

@ S U B X

for any Ml, Mze Ml and 0<A<1l, This is a simple consequence of the inequality (1)
and the conditions (2), (3) and (4).

In Remark 1 on page 124, Fedorov comments that if MeM 1is singular, one can
consider Moore-Penrose inverse M+ of M and define Ll(M)= L(M+). See also Remark 1

. to Theorem 2,7.1. 1In other words, if we defime L, : M + R by

l Ll(M)- L(M+), M+ being the Moore-Penrose of M, MeM,

his remarks seem to mean that Ll is a convex function on M. We show that this is
not true in general,
In this connection, we ask the following question. Let A and B be two posi-

tive semi-definite matrices of the same order and 0< A<1 be any real number. 1Is

l the inequality
[Aa+ (1-1)B]" < 2a™+ @-1)8%, (5)

analogous to (1), true?

The organization of this paper is as follows. In Section 2, we give a necessary

® B B _%TVEN v " »

and sufficient condition for (5) to be valid for every 0<A<1l. In Section 3, we
i we study this inequality in the context of a collection of positive semi~definite
matrices indexed by a probability space. In particular, we examine under what con-
ditions (EA)+1 EAT when A 1s a symmetric matrix of random variables such that A is
' almost surely positive semi-definite.

For any matrix A, range of A is defined to be the linear space spanned by the

columns of A and it is denoted by R(A). A  denotes an arbitrary g-inverse of A, i.e.
!. a matrix satsifying AA"A = A. For basic ideas concerning Moore-Penrose inverse,

see Rao and Mitra (1971, pp 50-53).

!
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2. Convexity of the Moore-Penrose Inverse:

The following result gives conditions under which (5) holds for every 0< A< 1.
Theorem 1. Let A and B be two real positive semi-definite matrices of the same
order. Then the following are equivalent:

(1) R(A) = R(B).

(i1) There exist positive semi~definite g-inverses A~ and B of A and B re-
spectively such that [AA+ (1—>\)B]-:_ AA + (1-A\)B~ for some positive semi-defintie
g-inverse [AA+ (1-A\)B]~ of AA+ (1-1)B and for every 0<A<1.

(111) [rA+ (1-)B1 < aat+ (1-0)BT for every 0<a< 1.

Proof: The proof of (i) => (iii) is similar to the proof of the remark in Giovagnoli
and Wynn (1985, p. 129). Let P be an orthogonal matrix such that A=P diag(Al,O)PT,
where A is a diagonal positive definite matrix. When R(A) = R(B), we then have

B=P diag(Bl,O)P'r where B, is positive definite. To show that (iii) holds, we

1
have to show that [XA1+ (l-A)Bl]-li )\AIl+ (l—A)B;l, which is true since A1 and Bl
are positive definite. (diii) => (ii) is obvious. We 5hall now prove (ii) => (i).
Suppose [AA+ (l—A)B)]-i AA~ + (1-A)B~ for positive semi-definite g-inverses A and

B~ (independent of ) and a positive semi-definite g-inverse [AA+ (1-\)B]~ for
every A as specified in the theorem, Premultiply and postmultiply the above by

A + (1-1)B yielding AA+ (1-A)B< [AA+ (1-A)B][XA™+ (1-2)B~ J[XA+ (1-A)B].

Lf R(A) # R(B), assume without loss of generality that R(A) is not contained in R(B),
in which case there exists a vector b satisfying Ab¥ 0 and Bb=0, Premultiplying
and postmultiplying the above inequality by bT and b respectively lead to

3T 2 - -
b Ab+ )\ (‘l-)\)bTAB Ab or equivalently bTAbi )\(_bTAB Ab - bTAb) , When 0< A< 1.

AbTAb <A
But, since bTAb> 0, the above inequality cannot hold for all 0< X< 1, This completes
the proof.

Remark 1. From Theorem 1 it follows that when A is positivesemi-definite the func~-

+
tion A+ A is matrix convex iff A varies over a set of positivesemi-definite matrices
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with the same range. The 'if' part of this assertion is proved in Giovagnoli and

Wynn (1985). |

Remark 2. For a given A with 0< A< 1, one can always find positive semi-definite
g-inverses [MA+(1-A)B]”, A” and B~ (depending on 1) and satisfying [AA+(1-1A)B]"

< A + (1-1)B” even though R(A) and R(B) are different. This could be seen as
follows. Let P be a nonsingular matrix satisfying A = P diag(Al,AZ,QO)PT and

B=P diag(Dl,O,Dz,O)PT whe_re A]_,AZ,D].,D2 are diagonal positive definite matrices.

The existence of such a P is guaranteed by Theorem 6.2.3 in Rao and Mitra (1971).

For a given 0< A< 1, consider the g-inverses [AA+(1-A)B] = (PT)-ldiag[(lAl'i-(l-k ®, )-1,
-1 -1-1

733 M,00PL and B =(p7) -ldiag(DI]; N,D;],'O)P
-1

where M and N are positive semi-definite matrices satisfying (AAZ)-]' <N+ AAZ and

(a7 (-0 Lo1rt, &7 = @D lataga

((l—k)DZ) -11M+ (l—A)D;l. With such a choice of M and N, it can be verified that
[AA+ (1-A)B] < AA + (1-A)B .
Corollary 1. Let Al,.. "’Ak be k real positive semi-definite matrices. Then

(AIAI;-...-PAkAk)"'i)\lAI-P...+XkA: for every A, satisfying 0<Ai <1 (1=1,2,...,k)

i

and ) A, =1 iff R(A,) = R(A,) for 1,] = 1,2,...,k.
{=1 1 3

Proof. We shall prove the result for k= 3. The proof in the general case follows

i

along similar lines, by induction. Assume A <1, R(A )= R(A,)=R(A.). Then
2 3

1 :
A A A A
+ 2 3 + + 2 3 + !
(A {A[ A A,+Aq4,) (A4 H(1-2)) (_1"1 A, + = A1 <hA+ (1—1\1)(14‘1 A,+ T3, Ay
‘ Y oM
(applying Theorem 1). Since m—; + -l-l—l- = 1, applying Theorem 1 again, we get

A A
+ + 2 + 3
- +
(M A+ A A+ AgA5) "< M A+ (1 "1)[1-1\1 ) 1%,

cludes the proof of the 'if' part.. To prove the 'only if' part, choose X3 = 0. Then

+ + + +
A3] = )\1A1+ >\2A2+ X3A3, which con

from Theorem 1, we get R(Al) - R(Az). Similarly R(Ai) = R(Aj) for all 1,j.

Corollary 2. Let An’ n> 1 be a sequence of positive semi-definite matrices and >‘n’

n> 1 be a sequence of nonnegative real numbers such that (1) iilx " 1 (:Li)izlx e
- >
+ — -
converges (iii) Z A iAI converges. Then ( 2 A 1A1) < 2 A 1A1' for every such sequence )‘n
i>1 ‘ i>1 i>1

n> 1 1ff R(A) 1s the same for all n2 1.
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Proof. The 'only if' part is proved as in Corollary 1. To prove the 'if' part,
assume that R(A;) is the same for all 1. Let B XliAi and B = AjAj. Let C

i=] n i>1
be a matrix having the same range as the A s and let § =1 - Z )‘i If we assume

that at least one Ai is positive (1<i<n) in Bn’ then R(Bn+6nC)i I]é(Bn)- R(B). Since

B + GnC-»B as n+=, following the argument given in Stewart (1969, p. 34) (see also
Campbell and Meyer, 1979, Chapter 10), we see that (B + GnC)+~> B+ as n+«, Applying
Corollary 1, we get (Bn+ GnC)+_<_ A1A1+...+A A +§ C The result now follows by
taking limits as n+ =,

Remark 3. The results iﬁ this section proved for téal symmetric positive semi-definite
matrices are also valid for complex hermitian positive semi-definite matrices, with

obvious modifications in the proofs.

3, Some Extensions and Applicatioms;

In this section, we consider the problem of extending the inequality specialized
in Seciton 2 for a collection o'f' positive semi-definite matrices indexed by a
probability space.

Let (Y,B,u) be a probability space and Ay, ye Y a collection of positive semi-

definite matrices of the same order. Let A = ((a ), 1<i, j1<n and ye Y. Assume

i3y

that a as a function of y is measurable for every 1l<i, j<a. There are three

i3y
basic questions one can ask in this connection,
+
(a) Let Ay (bijy)’ 1<1, j<n, yeY. Is bi.jy as a function of y measurable
for every 1<1i, j<n?

(b) If the answer to (a) is affirmative and each a is integrable with

ijy

respect to the measure u, is each b integrable with respect to u?

i3y
(¢) 1f the answers to (a) and (b) are affirmative, is the inequality

( I AuGyNT < f ATucdy)
y?’ y?7

true?

R IR
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We, first, tackle (a). We give two sets of sufficient conditions under which
A; as a function of y is measurable.
Theorem 2,
(a) Suppose R(Ay) is the same for all ye D ¢ B with u(D)=1. Then A;
as a function of y is measurable.
(b) Suppose Y is a topological space and B is some o-field on Y containing
all open subsets of Y. Suppose R(Ay) is the same for all y in Y.
If Ay—as a function of yris continuous, then A; as a function of y is
continuous.
Proof: Let A be any symmetric matrix with R(Ay) = R(A) for every y in D. There
exists an orthogonal matrix P such that PAPT = diag(A,,0), where A, is a diagonal

matrix with diagonal entries being the non-zero eigen values of A. Since Range

(Ay) = Range (A), ye D, P AypT = diag (Ay*,O) for some nonsingular matrix Ay*
+ T -1 F
which is of same order as A,. Note that Ay =P diag((Ay*) ,0)P, If Ay as a func- 1
tion of y is measurable (continuous) so is Ay* as a function of y., Consequently, .
(Ay*)-l as a function of y is measurable (continuous). Hence A; as a function 3
of y is measurable (continuous).
Theorem 3.
(a) Suppose there exists a set De B such that u(D)=1 and A A = A A
+ 192 Y2 N }
for every R D. Then Ay as a function of y is measurable.
(b) Suppose Y is a topological space and B is a o-field on Y containing all open
subsets of Y, Suppose A.L A = A A for all e Y. If A as a func~- .
PP 192 Y21 7172 y : ;
tien of y is r:t:'m:i.m.xous,'I:hex'ul\.y as a function of y is continuous, X
We need the following lemma in the proof of the above theorem. )

Lemma 1. Let {Ay: ye Y} be a family of pairwise commuting symmetric matrices of -

order nxn. Then there exists an orthogonal matrix C such that ;

AT T A S U I B S R T I O A Iy
AR NN '):’}‘.‘ 3 IO R A Y <
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T
C AyC diag{kly,kzy,...,xny},

where A seses are the eigenvalues of Ay

1y* 2y ny
Proof: This result is well known when Y is finite., See, for example, Rao (1973,

Exercise 15, p. 72). LetQ be the least ordinal number corresponding to the cardinal
number of Y. Q is obviously a limit ordinal. See Kamke (1950).

Let us identify Y with [0,2). In other words, the given family of matrices can

be written down as a generalized sequence AO’Al’A ""’Aa'°"’ o< Q,

(1)

We claim that there exists a vector z of unit length such that it is an

eigenvector for every Ad a< Q. For this, we proceed as follows.
b4

Let AlO be any eigenvalue of AO' Let 0<a< be any ordinal number. Then, there
(a)

exists a vector x of unit length and real numbers A, , B<a, satisfying the follow-

18
ing properties.

(1) Ai, is an eigenvalue of A, for every 0<B<a.

18 8
(i1) ABx(a) = Ale(a) for every 0<8<a.
(iii) AiB’ 0<B<a does not depend on a.
This x(a) is obtained by transfinite induction as follows.
There exists a vector x(l) of unit length such that on(l)= Alox(l). Note that
Alx(l), Aix(l),... are eigenvectors of A0 corresponding to the same eigenvalue AlO'

Consequently, every vector in the linear manifold spanned by {x(l),Alx(l),Aix(l)...}

is an eigenvector of AO corresponding to the eigenvalue A This linear manifold

10°
contains an eigenvector of A . See Rao (1973, p. 39). Let us assume that this
eigenvector x(z), say, 1s of unit length and the corresponding eigenvalue for A1
be All' Thus at the second stage, we have
(2) (2)
on Alox
(2) (2)




Now, since AO and A2 commute and also Al and A2 commute, every vector in the ,

linear mainfold spanned by {x(z),Azx(z) ,Agx(z),...} is an eigenvector of A0 correspond-
ing to the same eigenvalue )‘10 and also is an eigenvector of A1 corresponding to the
same eigenvalue All' This manifold contains an eigenvector x(3) of A2. Assume x(3)
to be of unit length and )\12 to be the corresponding eigenvalue of A2. Thus we have
(3) _ (3)
on = Alox
(3) (3)
Alx Allx
(3 ., 3
Ayx Ma®

Continuing this procedure for every n<w, where w is the first infinite ordinal

(n)

number, we find a sequence x » 1l<n<w, of vectors of unit length and a sequence

Alk’ 0<k<w of real numbers satisfying the following property:

Akx(n) = Alkx(n), O<k<n.

It is important to note that once an eigenvalue enters into the system, it remains

in the system at every stage of the induction process.

(n)

Since each x y l<n<w is of unit length, by compactness argument, this

sequence admits a convergent subsequence converging to x(‘w), say. Obviously, this

vector is of unit length, Further,

Akx(w) = Alkx(‘w) for O<k<w.

(w) x(w) ,Aflx(w) I

Now, every vector in the linear manifold spanned by {x ’Aw is

an eigenvector of Ak’ 0<k<w, corresponding to the eigenvalue Alk’ O0<k<w, But

(wtl)

this manifold contains an eigenvector x of A,. Let us assume thisvector to be

of unit length and let the corresponding eigenvalue of A, be Alw‘ Thus we have

.‘- -.‘...‘-'-‘
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Akx(w+1) - Alkx(w+l)’ 0<k<wh.

.
PRIy |

This process is continued arguing separately for the case of limit ordinals and the

case of non-limit ordinals.

PRFRE |

Ia)

L AR

Now, by compactness argument, x , &< admits a subnet converging to a vector
z(l) of unit length. This vector is the desired one. ‘5
. : (2) . 2, @O
Now, we claim that there exists a vector z of unit length such that z Lz é
and z(z) is a common eigenvector for each Ad, 0<a<@. Let AZO be an eigenvalue of ‘
Ao admitting an eigenvector y(l) such that y(l) is of unit length and y(l)L z(l).

(a)

Let 0<a< Q. We claim that there exists a vector y of unit length and real numbers
XZB’ OE_B< a, satisfying the following properties.

(1) X,, is an eigenvalue of A

28 g*
(ii) A y(a) = A y(a) for every 0<B8< a.
8 28 -
(1ii) y(a) N z(l).

(iv) XZB’ 0< 8<a is independent of a.

(o),

The y s and A, 's are obtained by transfinite induction as follows, At the first

28
step, for a=1, we have y(l)

2l

and A satisfying (1) through (iv). Let a=2. The

20
(1) (1 (2)

linear manifold spanned by {y sA Aly ,+++} contains an eigenvector y

Y ol

4

-
v
PRV I SV A

for A, with the corresponding eigenvalue, say, A

1 Since AO and A

21 1 commute, every

vector in this manifold is an eigenvector of A0 corresponding to the eigenvalue AZO‘

(2)

1

v v v
7

-

Without loss of generality we can assume y to be of unit length. Further,

e

y(Z)L z(l). To prove this, consider A1 (l). We have ?
1), T (1 1)T T z

(A?y( )) z( ) _ y( ) A; z( ) _ ( ) (A )n (1) (All)n y(l)T z(l) =0 y
Consequently, every vector in the linear manifold spanned by {y(l) Aly(l) iy(l),...} N
.

(1) (2) (1) (2) Q

is orthogonal to z ., Hence y Lz . Thus, we have a vector y of unit length
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satisfying
@ _, (@
ABY AZBy y 0<B<a
and
NORNEIY

This process is continued as in the first part of this proof noting that once an

eigenvalue )‘2 enters the system it remains in the system. By compactness of the

B
unit ball of Rn, we can find a subnet of y(‘a), 0<a<Q converging to a vector, say,
2(2). This z(z) is the desired vector,
Thus, we can obtain n vectors z(l),z(‘z),. ..,z(n) satisfying the following
properties

(@ |z2P) =1, i=1 to n.

(b) z(i).l.z(j), i# 3.
(c) Az(i)-l z(i),0<a<9,i=1 to n.
o ia -
Define C = (z(l),z(‘z),...,z(n)). C is the required orthogonal matrix.

(1) ,(2)

Proof of Theorem 3: By Lemma 1, there exists an orthogonal matrix C= (z »2 ,

.. ,z(n)) such that

T
c AyC = niag{xly.x ,....Any}. ye Y,

2y

where A A__ are the elgenvalues of Ay. Let fi: Y+ R be defined by

ly,kzy,c e ey ny

fiCy) = Aiy’ yeY, 1i=1 to n.

T W

Ayz , & linear

It is easy to check that each fi is measurable. For, fi(y)- z(i)

combination of the elements of Ay' Let 8¢ Y-+ R be defined by

1
81()’) - ?;(_YT if fi(}') ¥ 0

= 0 if fi(y) =0, yeY, i=1 to n.

R I S8 b R e I R
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81289518, are, obviously, measurable functions. Now,
T
Ay c Diag{fl(y),fz(y).--o,fn(y)}C .

Then A; =C Diag{gl(y),gz(y),...,gn(y)}CT (see Rao and Mitra 1971, p. 69).
Consequently, the elements of A; as functions on Y are measurable,

Now, we come to the question raised in (b). A; as a function of y need not be
integrable. The following is a simple example. Let Y = (0,1), B = Borel o-field on
Y, u = Lebesgue measure on B, and A.y = (y), ye Y, is of order 1xl, Ay as a function
of y is integrable with respect to u but A; is not.

The following result generalizes the inequality expounded in Section 2 and
answers the query raised in (c).

Theorem 5 Let R(Ay) be the same for all ye De B with u(D) = 1. Suppose A.y and A;

as functions of y are integrable with respect to u. Then
+ +
[f Ay u(dy) ] 5J A u(dy).

Proof: Let D be the collection of all positive semi-definite matrices of the same
order nxn as that of A.y and range the same as that of Ay, ye D. Then D is a closed
convex subset of an appropriate finite-dimensional Euclidean space and the map y-'-Ay
fromY to D is measurable. By Theorem 1, the map A+ A" from D to D is convex. Let
C ¢ R” be an arbitrary but fixed vector. Then the map f:0 + R defined by f(A) = CTA+C

is convex. By Jensen's inequality (see Ferguson (1967, p. 76)),

£(EA.,y) <EE(A ), i.e.,

)

CT(J Ayu(dy))+C 1J’ CTA;C u(dy)

Y Y
T +
= C( Ay r(dy))cC.
Y
GO A o PR T T TR A R R R N A R R T P T .o .
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This implies that, as C is arbitrary,

+ +
(J A u(dy)) i[ A u(dy).
y y
Y . Y
This completes the proof.

The condition on the range in the above theorem, in a certain sense, is necessary
for the inequlaity to be valid. If the above inequality is valid for all probability
measures for which the concerned integrals are finite, then the above conditon
on the range 1s necessary.

The above result can be couched in the language of random matrices as follows.
Corollary 3. Let A be a symmetric matrix of random variables such that A is positive
semi-definite almost surely and R(A) is the same almost surely. Assume that EA and

EA% exist. Then
En*t<eat,

The sbove inequality is an analogue of the usual Harmonic-Arithmetic inequality,
namely, if f is an almost surely positive random variables with Ef and Ef-l
finite then (Ef)-lj_Ef-l.

We also obtain as a corollary the following result due to Groves and ROthenberg
(1969, p. 690). See also Srivastawa (1970, p. 236).
Corollary 4, Let A be a symmetric matrix of random variables such that A is positive

definite almost surely, and EA and EA.-1 exist. Then

Corollary 5. Let Yl’YZ’ ..,YN be a random sample of size N form a multivariate
normal distribution with a singular variance covariance matrix IZ. Let ¥ be the

+
sample mean and S = z (Y -Y)(Y -Y) If r = rank(Z) and N> r, ther (ES)+§_E(S ).
i=]

- .
or ﬁ\.'
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Proof: It is known that R(S)< R(Z) and rank(S) = rank(I) with probability 1 when N> r.

Hence R(S) = R(Z) almost surely, The result now follows from Corollary 3.

REFERENCES

1. CAMPBELL, S.L. and C.D, MAYER Jr., (1979), Generalized Inverses of Linear
Transformations, Pitman, London,

2. FEDOROV, V.V, (1972), Theory of Optimal Experiments, Academic Press, New York.

3. FERGUSON, T. (1967). Mathematical Statistics, Academic Press, New York.

4. GIOVAGNOLI, A.andH.P. WYNN,(1985). G-majorization with applications to matrix
orderings, Lin. Alg. App., 67, 111-135.

5. GROVES, T. and T. ROTHENBERG, (1969) A note on the expected value of an inverse
matrix, Biometrika, 56, 690-691.

6. KAMKE, E. (1950) Theory of Sets, Dover Publications, New York,

7. MARSHALL, A.W., and I. OLKIN (1979) Inequalities: Theory of Majorization and Its
Applications, Academic Press, New York.

8. MOORE, M.H. (1973). A convex matrix function, Amer. Math, Monthly, 80, 400-409.

9. RAO, C.R. (1973). Linear Statistical Inference and Its Applications, Second
Edition, Wiley.

10. RAO, C.R. and S.K. MITRA (1971),Generalized Inverses of Matrices and Its
Applications, Wiley, New York.

11. SRIVASTAVA, V.K. (1970), On the expectation of the inverse of a matrix,
Sankhya, Series A, p. 236.

12, STEWART, G.W. (1969). On the continuity of the generalized inverse. SIAM
Journal of App. Math,, 17, 626-633.




- - --‘---u—\Uﬁ*éwl-,gr:_'fi-éa_vw_- T N Y W T Ty T o W T Wy W Wy vy gy T

SECUNIT Y CLASYUFIC ATION UF THIS PAGL (When Date Futereu)

REPORT DOCUMENTATION PAGE BEFORECOMD R TIONS

T REPOAT NUMBEg s - ny 2 GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

oIy, 55-0697 AP
Aﬁr ~) D(VAJA'j_g /L_ e e e e e e
& TITLE (end Subiitie) § TVYPE GF REPORY 8 PERIOD CUVERFD
ON THE MATRIX CONVEXITY OF THE MOORE-PENROSE Technical - July 1985
INVERSE AND SOME APPLICATIONS R IRTOREN e R RCR SR T
85-28 )

7 AUTHOR(a) . 8. CONTRACY OR GRANT NUMBER()
Demetrios G. Kaffes, M, Bhaskara Rao, Thomas F49620-85-C-0008
Mathew and K. Subramanyam

9. PERFORMING ORGANIZATION NAME AND AOORESS 10. PROGRAM ELEMENT, PROJECT, TASK
Center for Multivariate Analysis G\\“g‘;;‘“‘ UNIT NUMBE RS
515 Thackeray Hall Q3
University of Pittsburgh, Pittsburgh, PA 15260 | ns

Vi, CONTROLLING OFFICE MNAME AND ADDRESS 2. REPOAY OATE
Air Force Office of Scientific Research July 1985
Department of the Air Force 13. NUMBER OF PAGES
Bolling Air Force Base, DC 20332 15

14 MONITORING ACENCY NAME & ADORESS(/ dillerent from Controlling Ollice) 15. SECURITY CLASS. (of thie report)

Unclassified

. 180, T0ECL ASSIFICATION/ GOWNGRADING
. SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

7. ous'rmly.nou STATEMENT (of the abetract entered in Block 20, if dilterent from Repert)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue un reverae side I necessary and identily by block aumber)

g-inverse, Moore-Penrose inverse, optimal designs, random matrices.

20 ABSTRACT (Continue an reverse side If necessary and identily by biock number)

It is well known that if A and B are two positixe definite matrices of the same .
order and 0 < A < 1, then [AA + (1-x)B]=1 < aA-l + (1-2)B-1, It is easy to

construct an example consisting of two posTtive semi-definite matrices for which
e the above inequality is not true when one replaces the inverse operation by
;-:.‘_-; Moore-Penrose inverse operation. In this paper, we give necessary and sufficienT
Lk e conditions for the validity of the inequality [AA+(1-1)B1* < aA*+ (1-2)8% for
&-, every 0 < x < 1. As an application, we give a sufficient condition under which.
:‘:_:E:
ey ¢ FOoRM

: . v] vaan s W73 Unclassified
Ch ) ' SECURITY CLASSIFICATION OF THiS PAGE (Whan Dats Entered)

e AN,
IS, TIEVNE RS

. v
5.3 Y NS
PA At

PR




SECUMITY CLASSIFICATION QF TriS PAGE(WAen Data Entered)

the inequality (EA)+ < E(A+) is valid, where A is a square matrix of ,
random variables which is almost surely positive semi-definite, generalizing |
the well-known result (EA)™: < EA"! when A is almost surely positive
definite.

aRRRre OO0y SR

SRS

e
P et

-

-
s

W -.l".l.'.|; - I.

e,
[ 4

Wl i)
AN

e Ja e
l' l'

Py

Irv i

2

e
23
b
)
~
5
o

)
I
l!
)
l
!

Unclassified '
SECURITY CLASBIFICATION OF THIS PAGE(When Data Entered) ¢
1y ‘:

LS

: - - ” AV, & L T T "o AN IS AT RALL IR AN T IR » 0 N WA .‘"
G TN s.t‘ .'-?'"‘mt,.n el e .5.4'9,*, D S A 4t 4 nAY AT HTELACHL S e ‘t’w‘s‘s‘m" L ORGP L \‘E!



L2 N I W W W T o L O . P O PO e IO I T Tl e M A X T WE TS U TR W N T T P

END

S 'fi!

v

¢

D R B

PP

e

5.0 ,
BANALSY

[y
L

i

2

¢

AN

I
J\&‘-"J-,

.
w¥e 5 &

-

1,-
-

FILMED

. X

. .-
N e

U N )

L 3

A

v

M s

-
a
1'

a8

11-85

S

»
-

41

A

DTIC

~_'.‘r3r~_'"r~r~' N TN T MR T e e P
‘“

E ‘_ Bttt T
P R AR .t Lyipirani

SE2E,

Hhg N
e AN,

™
1]




